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Abstract

The problem of the determination of Green’s function in conduction for a rectilinearly anisotropic solid with an expo-
nential grading along a certain direction is studied. Domains of an unbounded space and a half-space, either three-
dimensional or two-dimensional, are considered. Along the boundary of the domain, homogeneous boundary conditions
of the first and second kinds are imposed. We find interestingly that, under this specific type of grading, the Green’s func-
tions permit an algebraic decomposition, which will in turn greatly simplify the formulation. The method of Fourier
transform is employed for the Green’s function for a half-space or a half-plane. Although the derivation process is quite
tedious, we show analytically that the inverse transform can be found exactly and their resulting expressions are surpris-
ingly neat and compact. In addition, both steady-state and transient-state field solutions are considered. By taking
Laplace transform with respect to the time variable, we show that the mathematical frameworks for the steady-state
and transient-state Green’s functions are entirely analogous. Thereby, the transient-state Green’s function is readily
obtained by taking Laplace inverse transform back to the time domain. These derived fundamental solutions will serve
as benchmark results for modeling some inhomogeneous materials. In the absence of grading term, we have verified ana-
lytically that our solutions agree exactly with previously known Green’s functions for homogeneous media.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Finding Green’s functions pertaining to certain physical phenomena, possibly incorporated with suitably
prescribed boundary data, is one of the fundamental subjects in mathematical physics. The knowledge of
Green’s functions can serve as basic ingredient to construct the fields via superpositions under various dis-
tributed sources and general boundary data. Classical fundamental solutions, such as in conduction and in
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elasticity (known as Kelvin’s solution), have been known for more than one century. Existing Green’s func-
tions of other physical phenomena include anisotropic piezoelectricity, thermoelasticity and poroelasticity
(Norris, 1994; Chen, 1993). Most of the existing fundamental solutions are under the condition that the
material is homogeneous. Recently, there has been a growing interest on functionally graded materials,
i.e. materials with spatially varying properties tailored to satisfy particular engineering applications. Re-
lated works in various applications can be found, for instance, in Reiter et al. (1997), Wang and Jasiuk
(1998), Horgan and Chan (1999) and Weng (2003). For a good overview of research on functionally graded
materials, the reader is referred to Hirai (1995) and Suresh (2001).

Existing Green’s functions for various physical phenomena in graded media are not many. The field
equations for Green’s functions of graded media are in general governed by partial differential equations
with position-dependent coefficients, and thus finding their explicit solutions is considerably complicated.
Typical solutions of Green’s functions are often expressed as series or integral forms (in the transformed
space) which in general delimit their applications. For some aspects of applications it is often desirable
to have closed-form expressions for the Green’s functions, such as in effective medium theories and in
boundary integral methods. In a recent study, Martin et al. (2002) derived the Green’s function for a
three-dimensional exponentially graded elastic solid, in which the Lamé constants are varying exponentially
along a certain direction. They showed that the Green’s function consists of two parts: one, corresponding
to the Green’s function of a homogeneous medium, i.e., Kelvin’s solution, and the other, expressing the ef-
fect associated with the grading part. However, the latter term, involves two integrals of some elementary
functions, cannot be evaluated exactly.

Motivated by this latter study, we elaborate further along this line of exploration, but focus on a simpler
mathematical framework, the conduction phenomena, aiming at finding exact, closed-form expressions for
the Green’s functions. As in Martin et al. (2002) we assume that the material property has an exponential
grading along a certain direction, but the conductivity tensor is generally anisotropic. Physically, this sim-
ulates a layered medium with a continuously varying conductivity. Domains of an unbounded space, an infi-
nite plane, a half-space and a half-plane are considered. Along the boundaries of the semi-infinite region,
homogeneous boundary conditions of the first- and second-kind are considered. For the first-kind boundary
condition the temperature potential is set equal to zero along the boundary, while for the second-kind the
normal component of the heat flux is taken to be zero. In addition, both steady-state and transient-state field
solutions are examined. We find, remarkably, under this specific type of grading, the Green’s functions per-
mit an algebraic decomposition (2.6). This will substantially reduces the algebraic complexity through the
entire analysis, and thereby enhances its general transparency. The plan of the paper is as follows. In Section
2, we derive the Green’s function for an unbounded space. We show that the steady-state Green’s function
for an exponentially graded medium is simply that of a modified Helmholtz equation multiplied by an expo-
nential term. Green’s function for a half-space is considered in Section 3. The method of double Fourier
transform is employed and the solution in the transformed space is derived exactly. After some tedious der-
ivations, we show that the inverse transform can be found analytically and their resulting expressions are
surprisingly simple. The solution forms imply that the Green’s function can be constructed from the fields
produced by a certain distribution of image points. In Section 4, we derive the Green’s functions for a
two-dimensional plane, either unbounded or half-plane. In contrast to those for a three-dimensional space
the mathematical formulation is considerably simpler. We show again that the exact Green’s functions can
be obtained in simple, closed forms. In Section 5, we consider that the transient-state Green’s functions for
an infinite space, an infinite plane, a half-space and a half-plane. By taking Laplace transform with respect to
the time variable, we show that the mathematical frameworks for the steady-state and transient-state Green’s
functions are entirely analogous. Thus, the critical step in seeking the transient-state Green’s functions is to
invert the (Laplace) transformed solutions back to the time domain analytically. We will show that this
is indeed possible. Lastly, in the absence of grading term, we have verified analytically that our solutions
recover exactly with previously known Green’s functions for homogeneous media.
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2. Green’s function for an infinite space

We consider an unbounded rectilinearly anisotropic solid which is spatially graded along a certain direc-
tion with respect to x. Here x = (xy, x5, x3) is a position vector corresponding to a Cartesian coordinate. We
denote the conductivity tensor of the material by k;;(x), in which k;; = k;;. The field equilibrium equation
under steady-state condition subject to a point source at x’ is of the form

o (- oG N
a_xl(klj(x)a_xj) = —(S(X—X), l,] = 1,2,3, (21)

in which d(x—x’) is the Dirac delta function. It is noted that sums over repeated indices are implied
throughout the paper. Here the Green’s function G is the temperature potential at the point x due to a point
source applied at x’. We now consider a particular graded material in which the conductivity tensor varies
exponentially along a certain direction f,

kij(x) = kijexp(2B - x). (22)

Here k;; is a constant second-order tensor and = (f3,,8,,f3) is a given constant vector. As in Martin et al.
(2002), the factor of 2 in the exponent is introduced here for later algebraic convenience. The assumption of
an exponentially varying property is common in the engineering literature in modeling functionally graded
materials. Relevant works include Giannakopoulos and Suresh (1997), Martin et al. (2002) and the refer-
ences contained therein. Since

0

aiﬂj(x) = 2Bk exp(2B - x) = 2:8,'1}1']‘("), (2.3)
equation (2.1) can be recast as
GRE, oG . )
k,-jm—FZﬂ[kU&j— —exp(—f - (x+x))o(x —x'). (2.4)

Here in deriving (2.4) we have employed the following identity of the Dirac delta function (Sneddon, 1972,
p.486)

SX)3(x — X)) = [(x)3(x — X). (2.5)

Equation (2.4) is the governing equation for Green’s function for a material with an exponentially graded
conductivity tensor (2.2). In the context of elasticity, under a similar exponentially grading assumption for
the Lamé constants, the subject was first explored by Martin et al. (2002). They found that, apart from a
common factor of exp(—f - (x +x')), the Green’s tensor for a three-dimensional elastic isotropic medium
consists of two parts: one singular part and the other grading part. The singular term is exactly the Kelvin
solution, i.e. the Green’s tensor for a homogeneous medium. While the grading part cannot be resolved
analytically, but consists of a sum of integral of modified Bessel functions and double integrals of finite re-
gions of elementary functions. In contrast, here in the context of conductivity we shall demonstrate that the
Green’s function admits simple closed-form expression.
To show this, we first claim that the Green’s function G follows the decomposition

G(x,x') =exp(—pB - (x +x'))G(x,x'). (2.6)
By substituting (2.6) into (2.4) we see that the exponential term was cancelled out identically and the func-
tion G° is simply governed by
3G

v Ox, i Ox j

— kijﬁiﬂjGe + 5(X — X/) - 0 (27)
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Remarkably, Equation (2.7) is exactly the Green’s function for a modified Helmholtz operator associated with
a general anisotropic tensor k;. This observation implies that the Green’s function for an exponentially
graded medium is simply that of a modified Helmholtz equation multiplied by an exponential term (2.6).

To proceed for the solution for G° in (2.7), we introduce an affine coordinate transformation (Milton,
2002)

y = Ax, (2.8)
where the transformation matrix A does not depend on x. Using the chain rule of differentiation, we have

o’G* o’Ge

m = Ak,«Aljm. (2.9)
Further, we note that (DeSanto, 1992)

8(x —x) =|J | 5y~ ¥, (2.10)
where |J| is the absolute value of the Jacobian given by

vl o)
Accordingly, Eq. (2.7) becomes

oG

Akiki,Alfm — kyBiB,G°+ | T 6(y —y') = 0. (2.12)
Now if one takes

A=k'2 (2.13)
Eq. (2.12) becomes

KV2GE — k22GC+d(y —y) =0, (2.14)
where

2 2 2
k=[J|"" =detk?, 2> =pkp, V? :aa_yf’aa_yfaa_yg' (2.15)

Here the superscript T indicates a matrix transpose. Now (2.12) is the standard form of the Green’s function
for a modified Helmholtz operator in the y-space, the solution of which can be readily found in the liter-
ature (see for instance, Arfken and Weber, 2001, p. 554)

Ge:mexp(—i ly =y (2.16)
Since
Y=Y I=[y-¥)(y-¥)]" =[x —x)"&") "k (x —x)]'""
=[x =x)"k ' (x = x)]"?, (2.17)

we can write the function G¢ (2.16) in terms of the position vector x in the form

e __ 1 _ H — AN T | n11/2
G = IR exp(—4R), withR=[x—x') k (x —x)]"". (2.18)
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Upon substitution of (2.18) back into (2.6), the steady-state Green’s function of conduction for an expo-
nentially graded medium takes the form

G(x,x')

!/

= IR exp(—pB - (x+x') — AR). (2.19)
The first term characterizes the Green’s function corresponding to a homogeneous conductivity k, while the
second part is a correction factor associated with the exponentially grading term. Of course, when f# = 0 the
inhomogeneous part takes the value of unity and the known solution for a homogeneous medium is recov-
ered (Chang et al., 1973, Eq. (18)). We mention that the conduction Green’s function for the same type of
exponential grading has recently been considered by Gray et al. (2003) with the condition that the medium
is isotropic. We have checked that our result (2.19) agrees with their solution under the isotropic condition.
In closing this section, we remark that the affine transformation could serve as a convenient tool in resolv-
ing potential problems of various kinds. Milton’s (2002) book contains some of the illustrations. Another
famous example is the procedures proposed for Saint-Venant’s torsion of anisotropic shafts (Sokolnikoff,
1956). We have made some substantial progress recently on related subjects based on this transformation.
Detailed results will appear in a future publication.

3. Green’s function for a half-space

We now derive the steady state Green’s function for a half-space. As in Section 2, we assume that the
conductivity tensor k is generally anisotropic and that the grading direction  could be arbitrary. Thereby,
without loss of any generality, we can consider that the half-space occupies the region 0 < x; < co. Along
the boundary of the domain, x; = 0, we suppose that homogeneous types of boundary conditions are im-
posed. For the first-kind boundary condition the temperature potential is set equal to zero along the bound-
ary, while for the second-kind the normal component of heat flux is taken to be zero. That is,

oG

G|xl:0:(), or klja—xj

=0. (3.1)

x1=0

By the decomposition (2.6), the governing field for G° still follows (2.7), but the boundary conditions (3.1)
are, respectively, transformed to

0G*°

Ge‘xlzo =0, or kl(/&j — ki;B;G° =0. (3.2)

X1 =0

The above two equations demonstrate that a second-kind of homogeneous boundary condition in graded
media is analogous to that of a convective type (a third-type) of boundary condition in homogeneous
media. To proceed, we first expand the Dirac delta function in (2.7) via double Fourier transforms with
respect to x, and x3,

! Note that the Fourier transform of a function f{x) with respect to the variable x and its inverse transform are defined here as
~ oo o
Fo= 70 = [ re s
B ( +oo -
=7 G =5, [ T

00
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1 N e . / > oy /
o(x —x) = i — (x| xl)/ expliéy (x2 — x5)] déz/ expli&;(x; — x3)]d&;, (3.3)
and assume a similar expansion for the function G as
G (x1,%2,x3) = / / (x1, &, &3) explis (x2 —xz)] explids(x3 —x3)] dé, dés. (3.4)

Note that Ge(xl, &, 53) is exactly the Fourier transform of G° with respect to the x, and x3 variables. A
direct substitution of (3.3) and (3.4) into (2.7) will show that the function G is governed by

&*¢* 4G’ ,
kg a0 +21(k1252+kn§3)—— G = —5(n —x)), (3.5)
and the boundary condition (3.2) becomes
e dée . ~e
Gl,0=0, or klla + [i(k12&, + ki3és) — ki;B)1G =0, (3.6)
X1:0

where we have set

'[/IZ = {rk(ll)é + ;LZ, 6 = (*’:23 63)T> (37)

and k;, 7,j=1,...,3, is the (2 x 2) submatrix of k = (k;) by deleting the row and column containing the
element k;. To resolve (3.5), we use the substitution (Lanczos, 1961, p. 359)

G (x1,6,8) = G (31,6, &) /w(x), (3.8)
in which
w(x1) = exp(ixi (k& + ki3&3) k). (3.9)

This transformation has the conspicuous properties that it will eliminate the first derivative term and will
also transform the differential operator into a self-adjoint form. Specifically, some algebraic manipulations
of the system, (3.5) and (3.6), will yield

&’G" o
o WG =—o(x; —xwx))/ku, (3.10)

together with

~Ww

~w dG
G |,_o=0, or +pG"

dx1 :0, WithpEkljﬁj/k“, (311)

x1=0
where

W= (E'mé+ Vkn)/ky, and m= <m33 " >7 with m;; = detk;. (3.12)
mp3 M)

Equation (3.10) can be solved using the usual solution procedures for Green’s function (Hildebrand, 1965
p-228). For completeness, we outline its solution procedures in Appendix B. Specifically, the function G
can be resolved as

/
~W

G (x,86,8) = ) lexp(—p(xis —x1<)) — exp(—p(x1s + x12))], (3.13)

wix})
2k
for the first-kind boundary condition (3.11);, and as
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w(x’l) H—p
e — — +
2k, xp(—p(x1s — x1<))

éw(xlv &, 8) = exp(—pu(x1> +x1<)) |, (3.14)

for the second-kind condition (3.11),, where we have defined
xi> = max(x;,x}), X< =min(xy,x)). (3.15)

Now substitution of (3.13) or (3.14) together with (3.8 ) back into (3.4) will lead to an integral form for the
solution of G°, which is indeed the Fourier inversion of G .In general, finding the closed-form expressions
for a double Fourier inverse transform may not be a simple task. Remarkably, despite their cumbersome
appearances, after a great deal of effort, we are able to show analytically in Appendices C and D that they
can be exactly integrated. The derived solutions for G¢ are given in (C.16) and (D.7). Consequently, a sub-
stitution of G° back to (2.6) will lead to our desired half-space Green’s function G,

N a iy (€XP(—AR)  exp(—4iR;)
G(x,xX') =exp(—f- (x+x ))( - dR, )’ (3.16)
for the first-kind boundary condition, and
N 3 ny [€Xp(—AR)  exp(—AR;) /O" exp(—4R;)
Gl x) = exp(- - (x + X)) (FRE 0 SR [T AR ), (.17)

corresponding to the second-kind boundary condition, where R was given in (2.18), A({) is defined in (D.5)
and

R, =/R* +

4y &:¢W<m+mw+o (3.18)

k]] ’ kll

It should be noted that, for brevity of expressions, the variables R; and Ry, defined above, have been rewrit-
ten from (C.12), (C.15) and (D.7) by simple addition and substraction. For (3.16), we observe the first term
on the right, after multiplication, is exactly the Green’s function for a graded infinite space, see (2.19). While
the second term on the right also represents the Green’s function for a graded unbounded space but the
image point X is shifted in a specific manner (see (C.12) and (C.15)). For (3.17), the first two terms on
the right again can be interpreted as superposition of imaged points. The third term, which involves an inte-
gral expression, is however an additional term due to the grading effect. To further elaborate on this point,
we introduce a new dummy variable {’ by letting ' = —x} — (. This will allow us to rewrite (3.17) in the
alternative form

—JR —)R; - —Ry) .,
Gmi)em(ﬂ@+ﬂ%mim)+ﬁim)+/ Mmg%afhﬁ’ (3-19)
where
h({) = =2p exp(p(x; + ), Ry = \/R2 C T ;“C S =), (3.20)

We note that this expression (3.19) is formally similar to the Green’s function of a harmonic operator for a
half-space with a third-type boundary condition (Greenberg, 1971, p. 86), which can be interpreted as a
continuous variation of imaged singularities. This in fact reflects our previous observation that a second-
kind of boundary condition in this exponentially graded media is mathematically analogous to that of a
convective type of boundary condition in homogeneous media.
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Lastly, if one sets p =0, it can be readily seen that A({) vanishes identically. Further, it can be verified
analytically that (3.16) exactly reduces to the corresponding known Green’s function for a homogeneous
half-space (Chang, 1977, Eq. (5.4)).

4. Two-dimensional medium
4.1. Green’s function for an infinite plane

Our previous formulation could also apply to a two-dimensional plane. Of course, the mathematical der-
ivations will be considerably simpler than those of the three-dimensional space. Here in this section we shall
examine the corresponding Green’s function for an exponentially graded plane. The previous framework
for three-dimensional Green’s function in Section 2 remains valid, but the indices i, j now take the values
of 1 and 2. For plane problems, k is a (2 X 2) matrix and the position vector is defined by x = (x;,x,). As in
Section 2, the field equation for G is still governed by (2.14), with the definition

@

_ 2 - 42
ﬂ - (ﬁlaﬁz)v v - ay% +ay%' (41)

The solution of Eq. (2.14) for a two-dimensional plane can be found from Arfken and Weber (2001) as

! 1 !
G(y,y) = %KO(;L ly =¥, (4.2)

which can be readily transformed back to physical space x as

1
© = _— Ko(JR 4.
G i 0(1 )a ( 3)

where K| is the modified Bessel function of the second kind, of order zero. Note that the variable R for a
two-dimensional plane has the same formal expression as in (2.18) for a three-dimensional space. But they
are intrinsically different as here k is a (2 X 2) matrix and x = (xy,x,). Accordingly the Green’s function for
an exponentially graded material in a two-dimension medium then becomes

G(x,x') = ﬁKo(lR) exp(—B- (x+Xx)). (4.4)

4.2. Green’s function for a half-plane

We now derive the Green’s function for an exponentially graded half-plane. Without loss of any gener-
ality we assume that the half plane occupies the region 0 < x;<oco. Along the boundary of the domain,
x1 =0, two types of homogeneous boundary conditions are considered. Since the derivation steps are en-
tirely parallel to that of three dimensional case, only the main difference will be illustrated.

Following the decomposition (2.6), it can be verified that the decomposed Green’s function G°(x1,x5) is
governed by (2.7) together with the boundary conditions (3.2). Analogous to (3.3) and (3.4), we can write

/ 1 / = . / o
ox—x)= Eé(xl —x)) / explié, (x2 — x5)]d&,,
Tl (4.5)
G (x1,x2) = 7 / G (x1,&) expli&y(xa — x/z)]d‘fz

o0
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This will allow us to show that the function G' is described as in (3.5) with the condition (3.6). But now i is
simplified as

=27+ knd, (4.6)

It should be mentioned when referring to previous equations for a three-dimensional space, the terms asso-
ciated with x3 or &3 should be taken out. Further, we can introduce a change of variable (3.8), omitting &3,
by setting

w(xl) = exp(iklzéle/k“). (47)

This will give exactly (3.10) and (3.11), and thus the resulting solutions for G in (3.13) and (3.14) remains
the same, with now the new definition

@ = (& detk + ki) /K3, (4.8)

Now substitution of (3.13) or (3.14) together with (3.8) with (4.7) back into (4.5) will lead to an integral
form for the solution of G°. Note that the major difference between those for 3D and 2D configurations
is that for a three-dimensional space, G° is the double Fourier inversion with respect to &, and &;, while
for a 2D configuration, G is the Fourier inversion with respect to one single variable &,. Thus the math-
ematical formulation for the latter problem is considerably simpler. Similar to the steps outlined in Appen-
dices C and D, we find that the half-plane Green’s functions are exactly derived as

/ 1 / 5
G(x,X') =5 exp(—f - (x+ X)) [Ko(AR) — Ko(iR0), (49)
for the first-kind boundary condition, and

G(x,x') = ﬁ exp(—B- (x+x)) {KO(/IR) + Ko(AR)) + /0OC h(C)KO(lRC)dC], (4.10)

for the second-kind boundary condition, where /({) is defined in (D.5) and R, R; and R; for a 2D config-
uration are given by

2 2
- k k
R — (X1> x1<) 1 | f12 I, I,
ku detk | Ky (r1 = X)) + (2 = x5) |
+ X1 )2 ki k1> ?
g2 = e e LLE YRR ¥, 4.11
i k11 detk kll (X] ‘xl) + (x2 x2) ) ( )
+ X< + 5)2 ki kia ?
R = (1> < k2 _
¢ k“ detk k11 ()C] xl) + (‘xz x2)

Note that the relation (3.18) remains valid for (4.11).

5. Transient Green’s functions
5.1. An infinite space

We now examine the transient Green’s function of conduction for an infinite space. In a fixed rectangular
coordinate x, the Green’s function G(x,x’; #,¢') of conduction at transient state has the form

@%(%U(X)g—g) —ﬁaa_(:: —3(x —x)d(t — 1), (5.1)
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Here &(x) is a material constant depending on specific heat and mass density. We consider that &(x) follows
a similar functional variation as the conductivity k;;(x) in (2.2), namely

1 1
— =—exp(2f - x). 5.2
i) " w p(2B - x) (5.2)
Indeed the assumption that l}i, and & possess the same grading is somewhat restricted and may not be real-
istic in practice. But we shall demonstrate that, under this prerequisite, the transient Green’s functions for
various cases can be resolved analytically. This will serve as benchmark solutions among very few existing

solutions of this kind. Back to (5.1), it will be seen that the Green’s function G can still be separated as in
(2.6)

G(x,x;t,1) =exp(—B- (x +X))G(x,X';8,1). (5.3)

Direct substitution of (5.3) into (5.1) will find that the exponential term can be cancelled out identically and
the field of G° is governed by

G 1 9G*
kB BG— = —x)o(t—1) = 0. 4
ljaxl_axj kl]ﬂzﬁ/G o at +5(X X)é(t t) 0 (5 )

To proceed, we make use of the Laplace transform
20} = [ e rind =70, (5:5)
0
where the overbar of f(s) denotes the Laplace transform of f{#). The Laplace transform of (5.4) with respect
to ¢t will give

20 st e
P CCD)

_ RA. 5 st' e ) —
a4 ) @) o= x) =0, (5.6)

where we have employed the vanishing of initial condition and, for clarity, we have multiplied the function
exp(st’) throughout. We note that in comparison of (2.7) for steady-state conditions, the two sets of gov-
erning fields, (5.6) and (2.7), are entirely analogous by setting

e st' e s
G o &G kB, kb + (5.7)

The simple correspondence of (5.7) suggests that we can directly write down the solution of (5.6) via (2.18)
as

— 1 ~
St e __ _

"G = py—- exp(—AR), (5.8)
where

~2 S

A= kijﬁiﬁj + & (5'9)
Making use of the identity (A.1), the inverse Laplace transform of (5.8) follows

H(t—t R’
G* :(t—t)oc3 exp (—4/—05)“20—%)) (5.10)
K[dno(t — 1)) 4o(t — 1)

where H(t—1t') is the Heaviside unit step function. Thus, from (5.3), we have
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oo H(l—l,)OC _L
Glox361) = Kdna(t — 1) P ( 4ot — t'))

cexp[—p- (x + X)) —al’(t—1)]. (5.11)
Equation (5.11) again implies that the Green’s function for an exponentially graded material can be re-

garded as a product of two parts. The homogeneous part is exactly the Green’s function for a homogeneous
solid with conductivity tensor k;

_ M=t (B
o= K[4mo(t — t’)]% P ( do(t — t’))' (5.12)

While the grading part is due to the grading (inhomogeneous) effect of conductivity which can be viewed as
a correction term. We mention that (5.12) also agrees with the known Green’s function for a homogeneous
solid with conductivity k (Chang et al., 1973, Eq. (16)).

5.2. A half-space

We now examine the transient-state Green’s function for a half-space. It is seen that (5.1) to (5.6) remain
valid and the boundary conditions, via Laplace’s transform, are

e 0G* e
G, =0, or kl,-a—xj — ki B;G T 0. (5.13)

The algebraic correspondence of (5.7) suggests that the solutions in the transformed domain should be

exp(—/R) B exp(—AR))

st e 14

G 47kR dnkR; (5.14)
for (5.13); and

e SRR TR [ IR

¢ o= 4nKR 47KR; + o h(©) 4nkR; dc, (5.15)

for (5.13),. Now making use of the identity (A.1), the inverse Laplace transform of (5.14) and (5.15) can be
exactly found. These, in conjunction with (5.3), will give the transient Green’s function

UL exp( (x4 X) — 20— 0))
k[dma(t — )]

R? R?
)= s S 1
(o (-z=n) o (-an)) (316
for the first-kind boundary condition, and

H(t—1)a
K[dna(t — )]

X lexp <_4cx(f2—t’)> + exp (_4(1(??—#)) + /Oooh(é) exp <— 4“(??_0) dC].

(5.17)

G(x,x;t,1) =

G(x,x;t,1) = exp[—B - (x +x) —al’(t — 1)
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for the second-kind boundary condition. Also, we have verified that if f = 0 both solutions agree with the
homogeneous half-space Green’s function at the transient state (Chang, 1977, Eq. (5.1)).

5.3. An infinite plane

For a two-dimensional plane, in analogous to (4.3), the solution of (5.6) takes the form

— 1 -
st e . 518
¢’ G =5 —Ko(iR) (5.18)

Taking the inverse Laplace transform of (5.18) and making use of the identity of (A.7), one finds

. H(t-1) 2 , /
" k(-] 7P [_4(1(1_{/) v (t_t)} (5.19)

Thus,
Gox;hf) = % P (‘%) exp(—p - (x+X) — 22(t— 1)), (5.20)

Letting p = 0, we recover the known two-dimensional Green’s function at transient state for a homogene-
ous solid (Chang et al., 1973, Eq. (16)).

5.4. A half-plane

Lastly, we consider the transient-state Green’s function for a half-plane. The algebraic correspondence of
(5.7) suggests that the solutions in the transformed domain, in view of (4.9) and (4.10), should be

— 1 ~ ~
st e = K ;LR —_ K }vR,' 521
e G 2m<[ 0(AR) — Ko(AR:)], (5.21)
for the first kind boundary condition, and
S 1 e e o0 e
&G = I Ko(ZR) + Ko(AR;) + / h(C)KO(/le)dC} , (5.22)
0

for the second kind boundary condition. Now making use of the identity (A.7) together with the basic shift-
ing theorems for Laplace transform, we find that the Green’s functions for a graded half-plane take the
forms

Glx,xs1,) = U= ">) exp(—B - (x + X)) — ai(t — 1))

4nx(t — ¢

(o) ()

for the first-kind boundary condition, and
_ H(t—-1)
dnk(t—t)

X lexp (— %) + exp (— %) + /0OC h({) exp (— %) dC].

(5.24)

exp[—B- (x+X) — oc)tz(t —1)]
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for the second-kind boundary condition. Of course, the variables R, R;, and R_ now follow the expressions
for a two-dimensional plane, namely Eq. (4.11).

6. Closure

In summary, we have derived a number of Green’s functions for conduction phenomena analytically for
an exponentially graded solid. Domains of an unbounded space and a half-space, either three-dimensional
or two-dimensional, with two types of homogeneous boundary conditions are considered. The exact expres-
sions for these Green’s functions are rather compact. Of course, further simplification can be anticipated if
we allow that the material possesses further crystallographic symmetries or assume that the grading direc-
tion and/or one of the symmetry planes is parallel to the boundary surface. The relative simplicity of the
obtained Green’s functions offers the prospect for a wide range of applications. For example, they may be
employed to study the nonlocal effects of composites and to assess the effective properties of graded random
composites. A recent review (Buryachenko, 2001) addressed some of relevant subjects. Further, as in homo-
geneous materials, we note that the Green’s functions also fulfill the symmetry property, G(x,x’) = G(x',x)
or G(x,x’; t,t') = G(x',x; t,t'). It should be mentioned that due to the mathematical correspondence be-
tween conduction and anti-plane mechanics, the present derived (steady-state) Green’s functions apply
readily to the context of anti-plane elasticity. Lastly there are some related subjects that one may explore
in future studies. For example, one may consider the Green’s function associated with a third-kind (convec-
tive) boundary condition, the Green’s functions for domains of an infinite strip or bi-material, and for
materials with cylindrical or spherical anisotropy.
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Appendix A. Some useful identities

We record some useful identities of integral transforms that are employed in the formulation:

2o (-9)} =\ Len-2vm) (A1)
FHE + ) @) =Kol + 0P, (A2)
FHKolo(E 4+ 7))} = 5 (2 + 07) det (A3)
) =), (A4
F (&= po)} =/ (), (A.5)

F He ()} = f(x — go), (A.6)
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f/{zlt exp <— jj) } = Ko(av/s). (A7)

We mention that (A.1) can be found in Sneddon (1972, p. 520); Egs. (A.2) and (A.3) are, respectively, re-
corded from page 111 and 125 of Campbell and Foster (1954). Formulae (A.4)—(A.6) are basic shifting the-
orems of Fourier transforms (Sneddon, 1972, p. 39). Equation (A.7) is recorded from Korn and Korn
(1968).

Appendix B. Solution procedure for (3.10)

In this Appendix we outline the solution procedure of (3.10), which will be formulated based on a stand-
ard procedure (Hildebrand, 1965, p. 228) for the Green’s function of a self-adjoint operator. Here we only
derive solution of (3.10) with the boundary condition (3.11);. The same equation associated with the con-
dition (3.11), can be resolved in a similar manner. As a starting point, we first let u(x) be a solution of the
homogeneous equation (3.10); that satisfies the boundary condition (3.11); at x; =0 and also let v(x) be
the other homogeneous solution which remains finite as x;—oo. The solution G can be expressed in the
forms

—w cru(x 0<x <X,
G (x,x)) = (), : v (B.1)
cv(x), X <x; < oo,
in which ¢; and ¢, are some constants and u and v can be determined as
u(x;) = ex —exp(—pux), 0<x <x),
( l) p(luxl) p( :u’xl) X A1 1 (Bz)

v(x) = exp(—px1), X <xp < o0.

By the method, the unknown coefficients ¢; and ¢, can be determined by demanding that G be continuous
at x; =x,

cv(x)) — cu(x)) =0, (B.3)
and that the derivative of E}w(xl,x’l) with respect to x; follows the jump condition

V' (X)) — ad (x)) = —w(x)) /ku1. (B.4)
These two conditions, (B.3) and (B.4), will give a unique solution for ¢; and ¢, as

v(x}) u(x)) ) 2k 1
= - —F = - th A = — . B'S

“ A2 A M w(x)) (B:5)
Hence (B.1) takes the form

~w , 1

G (x1,x]) = qu(xk)v(xb), (B.6)

or, equivalently, (3.13), where the variables x;- and x;~ have been defined in (3.15).

Appendix C. Fourier inversion of (3.8) with G defined in 3.13)

In this Appendix, we descLiE)e detailed derivation procedures for the Fourier inverse of G through (3.8).
We recall that the function G , defined in (3.8), was obtained from G", (3.13), divided by w(x;), (3.9). To
begin with, let us first expand the quantity u as
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1

| C ? c? :
"= (m33f§ + 2m23§253 + m2zf§ + )vzk”)z/k” = [(A <52 +Azf3>> + <Bz - Az) f% +D2 ) (Cl)
in which
A:\/m33/k11, B:\/mzz/kn, C:ng/kfl, D2:)\.2/k1]- (C2)

To perform the double Fourier inverse of (3.8), let us consider the first exponential term in the bracket of
(3.13). The second term of which can be integrated in a similar manner. To do the inverse transform, we
first derive the integral with respect to &,. For clarity, we denote the outcome symbolically as 2

—ux1s—x1<) / slEd e )
P = g1 {e (W(x1)>el(§zx2+;3x3); & — xz}

2piky w(x;)
e‘“<x1>—X1<) _i& (x;+m(x —x! ) —i&; (x’+k1—3x —x )
B _l{ 2uki e T ! e \" R 16— X (C3)

In the above we have incorporated the function w(x})/w(x;) via (3.9) inside the expression. To proceed, we
set

Cz
é_>52a 0 — (x1>—x1<), pz_> <Bz_?)é§+D27 a_>Aa

po— —C&/A%,  go — Xy + kil —x)) [k, (C4)
in (A.2) and (A.4)—(A.6). After some manipulations, it can be shown that Z has the form
1 1o -iG { +500-))+ (“—3—“‘2)@1—% )}
P — K <E2 2 D2 ZR) 32 2 IZTEELT 1 , C5
2nk11A0(63+ SR e (C5)
where
1
E2 = Bz - %; RZ = |:(xl> - )C1<)2 + (xzfgo)z}z. (C6)

We next invert the function 2 with respect to &; and denote the resulting formula as 2(x;,x,,x3)
2=F Y2 & — x3). (C.7)
For the Fourier inversion, we now make use of (A.3)-(A.6) by setting that

5_)537 O-_)RZa p2_>D27 a_>E7 p0_>07

C kis  C kp

@ =Xt =)+ (2= G2 ) o) )

This will allow us to derive (C.7) exactly as
_)\-
g1 opEAR) (C.9)
4nic AE R

where

R = (1> —x1)° + ! —@(x —x) + (2 —x5) 2

N ki knd* | kn b P

1 , C ; ki C ki / ?
—|——{(x3—x3)—1?(x2—x2)— <k_“_,?k_“>(xl —xl)} . (C.10)
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The function 2 can be further simplified by noticing that

1 1
3 3 ml c*\’ my W 1 2 1
kilAE = kil —3 (32 - —2) = k117}’l33 % - lez = |7 (m22m33 - m§3) = (det k)2
ki A k1, e k11
=K. (C.11)

Also, in conformity with (C.2) we can rewrite R in the form

2
R X0 LR C.12
e (C.12)
where
=2 ki kia ’ / 2
R=20 | 22y -
a2 =)+ (- )
P8 =) = T2y — ) — ks _ mos ki (x _x/)z (C.13)
detk |77 Y Ty 22 ki omasky )TV .

It can be proven analytically that the expression R in (C.12) is precisely the one defined in (2.18). Although
the form of (C.12) may not be simple, this expression has some merits. Let us take the first exponential term
in (3.13) as an example. We see that the term exp(x;~—x<) only enters the first item in (C.12), while it has
no effect on the part R. This suggests that for the second exponential term of (3.13) its inversion can be
readily obtained from (C.12) simply by replacing (x;~ — x;<) with (x> + x;<) without repeating the whole
derivations again. In other words, we have

G A G WO\ e st exp(_IR)
_ = Hs ) 1 iE2(02-2) i3 (13 ) £ 4 € — C 14
4n? /—oc /;oc 2k ¢ (w(xl))e ve Yddgs AR ( )
where
2
R = (XDICLK)Jr R, (C.15)
11

Hence we have

erw o _ EXP(=4AR)  exp(—4R;)
G(x,x) = 4dniR dniR; (C.16)

Appendix D. Fourier inversion of (3.8) with G given in (3.14)

Here we present the procedures of Fourier inverse transform for (3.8) with G given in (3.14). As a first

step, we first rewrite (3.14) as

~w W()C/ ) 1 _ _ 1 — 14 -

G (x ’i ,é — 1 (_e plris—x1<) + —e ulrstxi<) _ e ulristx1<) . D.1

&) =7 "\ 2u (u+p)p (B-b

The first two terms are exactly identical (apart from a difference in sign) with those in (3.13) and thus their

inversions follow immediately from foregoing results derived in Appendix C. Here we only need to consider

the third exponential term. For convenience, let us use 4" to represent this function. To proceed, we follow
an idea of Carslaw (1902) by letting u = iy, which will give
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p p .
H = ————exp(— = - eXp(—
(,Ll +p)ﬂ Xp( :u(x1> +x1<)) (111 _’_p)”/’ Xp( ln(x]> +x1<))
- (_ 2) (p —in) cos n(x1> + x1<) — (n +1p) sin n(x1> +x1<) (D.2)
in Pt ‘ '
Making use of the following identities of Fourier cosine and sine transforms (Sneddon, 1972)
p * n > ,
— = exp(—p{) cosnld¢, = exp(—p{) sin nld¢, D3
L= [ enlpheosncdt, M= [ exp(p) sinnat (D3)

the function %" is equivalent to

H = —% /OOO exp(—pl) exp(—in(x;s + xi- +{))d{ = i /Oooh(C) exp(—u(x1> +xi- +{))d{, (D.4)

where
h({) = =2p exp(—pl). (D.5)

Up to this stage we have not yet made the Fourier inversion; we simply rewrite the term 2" in the form of
(D.4). Thus, upon substitution of the third term in (D.1) into (3.8) and (3.4), the Fourier inversion of the
corresponding G° can be expressed as

1 d o I3 e b g
0

o 1 w(x, ey

Since { is a dummy variable which does not involve in the inversion formulae, we can interchange the inte-
gral sign for { and the Fourier inversion with respect to &, and &;. The advantage of this alternative expres-
sion of A" is now recognized that the Fourier inversion of (D.6) is directly obtained, without derivations,
from (C.15) simply by replacing (x;~ + x;<) with (x1= + x;< + {). Thus we conclude that the Fourier inver-
sion of the third term in (D.1), incorporating with (3.8) and (3.4), follows

2

) SRR ith g2 = = t0+ 0 @
/o h({) 4m<Rg db, Wltth_ ki R (D'7)
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